

#### The NISP Spectroscopy performance Evaluation done for the MPDR

# A.Ealet



WITH J.Amiaux, ,B.Garilli, L. Guzzo, W.Percival, E. Prieto, D. Markovic, S. De la Torre, J.Zoubian and the NISP spectro tiger team



Verification of the spectroscopic requirements with straylight and persistence using an E2E simulation chain

|             | sensitivity                                                                                                                           | Requirement          | Comment                                                                                                                                                                        |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R-GC.2.1-1  | NISP-S SNR @ 1.6<br>$\mu$ m<br>For flux >= 2 10 <sup>-16</sup><br>erg.cm <sup>2</sup> .s <sup>-1</sup><br>For a 0.5 " object<br>size. | 3.5                  | This is a mean case for science<br>-should be verified on all objects<br>-should be verified for >95 % pixels<br>in the field                                                  |
| R-GC.2.1-2  | Completeness                                                                                                                          | >45 %<br>(goal 65 %) | The completeness is the number of<br>galaxies for which a redshift is measured,<br>divided by total number of galaxies at the<br>flux limit specified by R-GC.2.1-1            |
| R-GC.2.1-11 | Purity                                                                                                                                | > 80 %               | The purity is the number of galaxies that<br>satisfies R-GC-1.1-3 ( i.e σ(z)<0.001(1+z))<br>Divided by the number of galaxies that<br>Satisfied R-GC.2.1-1 and R-GC.2.1-2<br>* |



Verification of the spectroscopic requirements with straylight and persistence using an E2E simulation chain

=>compute SNR, completness and purity from 'realistic images'

#### Performance E2E verification chain



# E2E Simulation Pipeline

-TIPS : (OUSIM) (Zoubian etal.) Pixel image simulator

Produce the 16 detector focal plan Can add all instrumental effects in a modular way



#### Imodel: OUSIR-SPE-LE3 (B.Garilli et al)

Prototype of pipeline to compute redshift and reliability, completeness and purity on images.

-Do a full extraction of 1D spectra in images using AXE -Do a combination of rolls taking dithering and gaps into account -Do a blind search of emission line

-Evaluate completness and Purity



1 - Define 9 representative pointing (scenarios) of the 'reference survey' Compute for each, the zodiacal noise and the star density based on 2 mass

#### 2 - Simulate pixel images for the 9 scenarios (TIPS)

Use the pixel level simulator to generate images with :

- The nominal NISP configuration and observational sequence
- The previous sky noise and stars

Method

- A noise model of the telescope straylight
- A model of the persistence noise decay from the detectors
- Cosmic rays

**COMPUTE SNR on images to verify the compliance of each scenario** 

#### 3 - Compute completeness/purity for each scenario (IMODEL)

- Add galaxies on each image from a representative catalogue
- Do a full processing of the image with galaxies to 1D spectra
- Do a redshift evaluation and reliability

#### 4- Final estimation on the mean reference survey

EUCLID CONSORTIUM

#### The reference survey

- 9 fields distributed within all representative regions of the reference survey, including the borders, have been selected.
- Called observing scenarios #1-9





#### Outfield+Zodi Zodi+Background in e-/s/pix in NISPGR band (CBEnominal) over full sky

#### Reference survey maps



10

# The straylight model (from the system team)





- Flat diffuse noise on the FOV
- % to the total star count
- Added to the sky contribution



#### In- Field

- Noise around bright objects
- Very local effect
- % to object flux

#### Defined for the 9 representative pointings : star density + telescope out of field

85.4

50.4

15.4

-19.6

-54.6

-89.6

70.0





140.0

zodiacal light (e-/s/pix)

210.0

280.0

350.0



10<sup>0</sup>





# ADDING COSMIC AND PERSISTENCE

# Cosmic ray model

- -Use CREME9 (<u>https://creme.isde.vanderbilt.edu/</u>]) to generate the primary spectrum (no secondaries)
- Run a simulation of the number of electron for the primary spectrum inside the H2Rg detectors



#### Persistence model

- We have used one detector in Euclid specifications to fit the persistence on a large range of pixels and for different illuminations and configurations.
- We have checked that one modelisation is able to reproduce the decay of all the pixels within the errors.
- We find that a multi exponential-law model of the persistence signal is well adapted

Persistence signal 70s after illumination





Under full well: Persistence decays to dark values within 2 hours

Over full well: After 8 hours, almost at the reference dark levels.

### Model used for simulation





Source

**WORST** 

# Zodi light + Dark + Readnoise + star + straylight + persistence + cosmic rays

BEST

299 598 900 1199 1501 1801 2100 2402 2701 19

**MEAN** 

# The NISP observational sequence



| Observation mode     | Red grism | Y   | J  | Н  |
|----------------------|-----------|-----|----|----|
| Exposure time (s)    | 560       | 105 | 83 | 82 |
| Integration time (s) | 565       | 110 | 88 | 87 |
| Drift time (s)       | 30        | 20  | 20 | 60 |



| Exposure sequence | 1        | 2         | 3          | 4         |
|-------------------|----------|-----------|------------|-----------|
| Dither (arcsec)   | (0,0)    | (100, 50) | (100, 0)   | (100, 0)  |
| Grism             | red 0deg | red 90deg | red 180deg | red 90deg |

Only 50% of the objects have 4 exposures.



## Persistence effect estimations

EUCLID Consortium

-Simulation of 16 full observational sequences Grism + filters (18 hours) -Analyse 2 next observations







# Adding all contaminations in the 9 scenarios



# COMPLETENESS AND PURITY EVALUATION

## Imodel pipeline simulation

- Add galaxies with the same catalogue as in previous studies
- Add noise maps (= only the poisson effect)
- Run each pointing in the Imodel pipeline
- Compute redshift , completeness and purity



#### Imodel



## Final distribution Dn/dz (level 1)



\*Need a luminosity function : based on (Pozetti et al 2015)

## Summary of the studies

| Test                                                | Sample*             | Completeness | Purity | N <sub>gal</sub> (sq.deg)<br>(before purity) | N <sub>gal</sub> (sq.deg)<br>(after purity) |
|-----------------------------------------------------|---------------------|--------------|--------|----------------------------------------------|---------------------------------------------|
| Minimal zodiacal light only                         | Scenario 3          | 0.67         | 0.87   | 2627                                         | 2284                                        |
| Stray light contribution                            | Scenario 3          | 0.60         | 0.85   | 2362                                         | 2010                                        |
| Stray light contribution                            | Reference<br>survey | 0.53         | 0.79   | 2087                                         | 1641                                        |
| Stray light contribution,                           | Scenario 5          | 0.53         | 0.76   | 2100                                         | 1605                                        |
| Stray light + persistence                           | Scenario 5          | 0.54         | 0.75   | 2117                                         | 1597                                        |
| Stray light + persistence + cosmic with persistence | Scenario 5          | 0.52         | 0.72   | 2054                                         | 1470                                        |

-Scenario 5 has been found to be the most representative of the mean reference survey : -This scenario is compliant with the SNR requirement and the completeness requirement

-Purity is below requirement of 0.8

#### Conclusions

- The addition of straylight noises, inside NISP images, results in a relative decrease of the completeness of about 10-15% and a relative decrease of purity of 5%-10% as well.
- This nuisance is primarily caused by the Out-of-Field stray light contamination that is increasingly growing when the star density increases.
- Contaminations of NISP by persistence effects (bright sources and cosmic rays hits) have a relative impact on completeness 2 to 3 times smaller than stray light.
- Star density is a parameter that directly impacts on NISP spectroscopy
- ⇒ it should be seriously taken into account during the field selection process and survey optimisation.



| Method                                                                                                                       | SNR ETC                                                | SNR 2D                         |  |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------|--|
| Principle                                                                                                                    | Analytic formulae:                                     | Numerical with images:         |  |
|                                                                                                                              | $\frac{\int_0^r Signal}{\sqrt{\int_0^r S + B + RN^2}}$ | $\frac{\Sigma}{\sqrt{\Sigma}}$ |  |
| Resolution                                                                                                                   | Radius at EE80                                         | Pixel – radius                 |  |
| Computation                                                                                                                  | Fast                                                   | Slow                           |  |
| Application                                                                                                                  | Requirement flow down<br>Bypass                        | Validation at the image level  |  |
| SNR 2D CAN BE USED to compute SNR with :<br>- One pixel<br>- Synthetic object with known size and flux (convolved with EE80) |                                                        |                                |  |

- Real galaxy profile (convolved with EE80)

- A full image -> SNR for all pixels with different realizations and all effects->BYPASS

## Imodel simulation Pipeline

Prototype of pipeline to compute redshift and reliability, completeness and purity on images. (B.Garilli et al)

-Do a full extraction of 1D spectra in images using AXE
-Do a combination of rolls taking dithering and gaps into account
-Do a blind search of emission line

Assign a reliability flag to each measure (EZ, Garilli et al. 2010, PASP 122, 827)

• given the redshift, *back* search on spectrum all expected emission lines (Ha, SII, OIII, H $\beta$ ...) with a lower S/N threshold (S/N≥2)

| <ul> <li>all/most expected lines are found</li> </ul>                  | reliability >= 90% |
|------------------------------------------------------------------------|--------------------|
| <ul> <li>half of expected lines are found (and half &gt;=2)</li> </ul> | reliability = 75%  |
| <ul> <li>Only one line is expected and found</li> </ul>                |                    |
| S/N>5                                                                  | reliability 65%    |
| S/N<5                                                                  | reliability 50%    |
| <ul> <li>No emission line found</li> </ul>                             | reliability 0%     |

Completeness = objects for which measured redshift has reliability ≥ threshold

Purity = reliable objects for which redshift is correct within  $3\sigma$ 

# The NISP instrument model

| Collecting area      | 10066.0 cm²         | Number of detector     | 4x4                    |
|----------------------|---------------------|------------------------|------------------------|
| Grism Red grism Odeg |                     | Gap in the X direction | 3mm + 8 ref. pixels    |
|                      | Red grism 90deg     | Gap in the Y direction | 6mm + 8 ref. pixels    |
|                      | Red grism 180deg    | Field of view limit    | 5mm                    |
|                      | Blue grism          | Number of pixel        | 2040x2040 pix per det. |
| Dispersion           | 13.4 Angstrom/pixel | Pixel size             | 18µm                   |
| PSF EE50             | 0.355 arcsec        | Pixel scale            | 0.3 arcsec             |
| PSF EE80             | 0.684 arcsec        | Total noise            |                        |



#### Persistence data

#### As function of the incoming flux







#### Modelisation

#### Model = sum of exponential decay laws



### SNR2D comparison of effects



2 10<sup>-16</sup> erg.cm2.s-1 @1.6micron and size =0.5"



## Redshift error ( < 0,001(1+z))-





#### Completeness and Purity



COMPLETENESS = 
$$C(z, F) = \frac{N(z_m, F)}{Ntotal(zt, F)}$$

PURITY = 
$$P(z, F) = \frac{N((z_m - zt) < 0.001(1 + z), F)}{N(z_m, F)}$$

# The NISP instrument model

| Collecting area      | 10066.0 cm <sup>2</sup> | Number of detector     | 4x4                    |
|----------------------|-------------------------|------------------------|------------------------|
| Grism Red grism Odeg |                         | Gap in the X direction | 3mm + 8 ref. pixels    |
|                      | Red grism 90deg         | Gap in the Y direction | 6mm + 8 ref. pixels    |
|                      | Red grism 180deg        | Field of view limit    | 5mm                    |
|                      | Blue grism              | Number of pixel        | 2040x2040 pix per det. |
| Dispersion           | 13.4 Angstrom/pixel     | Pixel size             | 18µm                   |
| PSF EE50             | 0.355 arcsec            | Pixel scale            | 0.3 arcsec             |
| PSF EE80             | 0.684 arcsec            | Total noise            |                        |

