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1. Quelles observables ?
Combinaison du shear et/ou de la densité de galaxies au delà 
de l’ordre 2, 

Connexions possibles avec d’autres observables (Minkowski, 
comptages/correlations de pics…)

2. Pourquoi les mesurer ?
Information complémentaire du spectre
Analyse biais/alignement intrinsèque
Nouvelle fenêtre d’observation/de découverte

4. Sait-on les décrire ?
Théorie des perturbations et modèles phénoménologiques
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3. Comment les mesurer?
En espace réel, mais plus surement en espace Harmonique



Weak lensing case�
Sato+09 (used 1000 realizations)�•  The information 

content of WL power 
spectrum is 
(significantly) smaller 
than the Gaussian 
expectation (also see 
Lee & Pen 08; MT & 
Jain 09; Yu+09) !

•  The power spectrum is 
not enough in WL case!

•  Where is the 
information contained 
in the initial field gone? 
The initial information 
is lost? !

 �

Information lost is more significant 
for lower source redshifts�

2. Information (mode amplitudes) content from 
bispectra
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Figure 10. Cumulative S/N for the power spectrum (P ), the bispectrum (B) and the joint measurement (P + B) for a survey area of 25 deg2 and source
redshift zs = 1. They are shown as functions of the maximum multipole lmax, where the power spectrum and/or bispectrum information are included over
lmin ! l ! lmax (see equations 27, 28 and 31). The minimum multipole is set to lmin = 72. We do not include the shape noise contamination here – it is
shown in the next figure. The circle, triangle and square symbols are the simulation results for P , B and P + B measurements, respectively, computed from
the 1000 realizations. The thick short-dashed, long-dashed and solid curves are the corresponding halo model predictions. The corresponding thin curves are
the results without the HSV contributions. For comparison, the dotted curve shows the S/N for the power spectrum for the Gaussian field, which the primordial
density field should have contained. Note that the simulation results for B and P + B could be overestimated by about 10 per cent due to a finite number of
the simulation realizations used to estimate the covariance matrices (Hartlap et al. 2007).

the simulation results for the S/N of the power spectra, the bispectra and the joint measurements, respectively, which are computed using
the 1000 realizations. The thick/thin short-dashed, long-dashed and solid curves are the halo model predictions with/without the HSV terms.
First of all, the lensing bispectra add new information content to the power spectrum measurement. To be more quantitative, adding the
bispectrum measurement increases the S/N by about 50 per cent for lmax ≃ 103 compared to the power spectrum measurement alone.
Note that the lmax of a few thousands is the typical maximum multipole for upcoming weak lens surveys. This improvement is equivalent
to about 2.3 larger survey area for the power spectrum measurement alone; that is, the same data sets can be used to obtain the additional
information, if the bispectrum measurement is combined with the power spectrum measurement. Secondly, the halo model predictions are
in nice agreement with the simulation results. Note that the total S/N for the joint measurement (P + B) is close to the linear sum of the
S/N values ((S/N)P and (S/N)B), not the sum of their squared values (S/N)2, due to the significant cross-covariance between P and B (see
Appendix C in Takada & Bridle 2007, for the similar discussion). If ignoring the cross-covariance, adding the bispectrum measurement does
not much improve the S/N (only by 5 per cent or so). Hence it is important to take into account the correlation between the two measurements.

Next, let us compare the result above with the case of a Gaussian random field, which is shown in the dashed curve in Fig. 10. The S/N
for a Gaussian field is equivalent to the number of independent Fourier modes up to a lmax for a given survey area. The figure clearly shows
that the joint measurement of the power spectrum and the bispectrum does not recover the full information content of the Gaussian field. This
implies that the higher-order statistics beyond the bispectrum are also important to recover the full information content. One may argue that
the initial memory of the field cannot be recovered due to the non-linear structure formation. However, we would like to note that, if ignoring
the HSV contribution to the covariance, adding the bispectrum can recover about 75 per cent of the Gaussian information, as shown by the
thin curves. Hence the loss of the information contents is mostly due to the the HSV contribution. As discussed in Section 3.4, the HSV alters
the overall amplitude but preserves the shape of the lensing spectra. Hence the HSV may give the worst case degradation of the amplitude
parameter, but may not cause any serious degradation of parameters that are sensitive to the shapes of the lensing spectra. A genuine impact
of the HSV on cosmological parameters needs to be further studied and this is our future work.

In Fig. 11 and Table 1, we show the S/N expected for the upcoming wide-field weak lensing surveys, the Subaru Hyper Suprime-Cam
(HyperSC) survey and the DES, which are characterized by the survey area, the mean source redshift and the mean number density of source
galaxies of Ωs = 1500 sq. degrees, z̄s = 1 and n̄g = 20 arcmin−2 for the HyperSC survey, while Ωs = 5000 deg2, z̄s = 0.7 and
n̄g = 10 arcmin−2 for the DES, respectively. Here we employ the halo model to compute the S/N and assume a circular survey geometry
for simplicity. The figure and table show that these surveys promise a significant detection of the lensing bispectrum; (S/N) ≃ 26 or 29 for
the HyperSC or the DES, respectively, when assuming lmax ≃ 2000 and including the shot noise effect. It also means that the theoretical
prediction of the lensing bispectrum needs to be as accurate as a few per cent for the upcoming surveys. We find that the bispectrum adds

(Kayo, Takada & Jain 2012)



WL 2pt+3pt tomography�

A factor 2-3 
improvement (by 
recovering the initial 
information content 
via 3pt function)!
!
This forecast includes 
all the triangle 
configurations for a 
given lmax=3000!
"
Non-Gaussian 
errors need to be 
included"
"
"
�

MT & Jain 04�Matsubara & Jain ‘04

Cosmic Shear, tomographie spectres & bispectres 
 



Au delà des mesures de modes,Hope�

•  The different correlation functions depend on halo bias, matter 
power spectrum and lensing efficiency in different ways!

•  The comprehensive 2pt analysis of WL (Bernstein 09)!

•  A comprehensive joint analysis of 2pt and 3pt functions for a survey 
(not yet done)!

•  This combination is more powerful? If so, how much improvement?   !
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2pt functions ! 3pt functions�

• Les différentes fonctions de corrélation dépendent des biais, du 
spectre de puissance, de la fonction d’efficacité des lentilles, des 
effets d’alignement intrinsèque, de manière différentes ;

• Besoin de mettre en place une analyse conjointe complète (déjà fait 
à l’ordre 2, jamais complètement pour l’ordre 3)

• Quelles combinaisons ? quels gains ? Sur quelles quantités (P(k), w0, 
w1, modification de la gravité ?)
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Fig. 1. Shear patterns in the vicinity of one of the pair points either x1 or x2 (positioned at the center of the plot) for n = −1.5, n = −1 and
n = −0.5 (from left to right) as a function of x′. It illustrates the results of Eq. (35). Coordinates are arbitrary.

So, if one defines ξφ as the potential two-point correlation func-
tion,

ξφ(x) =
∫

d2 l′

l′2
Pκ(l′)W(l′θ0) eil′ .x

= 2π
∫

dl′

l′
Pκ(l′)W(l′θ0) J0(l′ x), (26)

we get
∫

d2 l′Pκ(l′)W(l′θ0) eil′.x′ u(θl′ ) =

−
(

x′2 − y′2
2 x′ y′

) [
1
|x′|2 ξ

′′
φ (|x′|) − 1

|x′|3 ξ
′
φ(|x′|)

]
· (27)

Therefore, in the case of a power law spectrum, P(l) ∼ ln, one
has for x ≫ θ0

ξφ(x) ∼ x−n (28)

so that
[
ξ′′φ (|x′|) − 1

|x′|ξ
′
φ(|x′|)

]
= n(n + 2)

ξφ(|x′|)
|x′|2 (29)

which is equal to −(n + 2)/n ξκ(|x′|). Hence, the 3-point func-
tion clearly depends on the slope of the power spectrum:

⟨γ2(x)γ(x′)⟩ = −n + 2
n

c2 1 σ
2
κ ξκ(|d′|)

(
cos(2θd′)
sin(2θd′ )

)
, (30)

where d′ is the distance vector between x′ and x, d′ = x′ − x,
and θd′ is its angle to the first axis. It is interesting to notice that,
contrary to the convergence field, the amplitude of the three-
point shear function vanishes (in units of the square of the two-
point function) when n → −2. Although this result is obtained
in some specific limiting configuration it expresses a general
trend: when n is close to −2 the shear is dominated by very
long wavelength5, much longer than x′ − x, so that what is

5 When n = −2 the computation of the variance of κ (or γ) shows
a divergence at l → 0 when it is computed with the Limber approxi-
mation. It means that in the limit n→ −2 the fluctuations of the shear
field are dominated by infinitely long wave modes, much longer than
|x− x′|. Moreover, when n < −2 the whole calculation presented here,
which is based on the small angle approximation, becomes invalid.

computed here is the same as contracted three point functions
that all vanish for symmetry reasons.

For n ≈ −1.5 and sources at redshift unity, we know from
Bernardeau et al. (1997) that in the quasilinear regime,

c2 1 ≈ 36.7/Ω0.8
m , (31)

a result that can be obtained from Eq. (21) with a =

10/7, b = 1, c = 4/7. Consequently, observables like
⟨γ2(x)γ(x′)⟩/

(
σ2
κ ξκ(|x′|)

)
would provide alternative ways for

measuring the cosmic density parameter Ωm. They do not re-
quire mass reconstruction but still require some filtering which,
for the reasons mentioned in the beginning, we would like to
avoid.

2.2.2. Computation of ⟨(γ(x1).γ(x2))γ(x′)⟩
In the previous paragraph the calculations were tractable with-
out a strong hypothesis about the shape of the bispectrum.
Here, we explore more generic geometrical cases, so more spe-
cific assumptions about the bispectrum are necessary to carry
out analytical computations. We assume it follows the prescrip-
tion usually adopted in the strongly non-linear regime, that is,
the coefficient Qκ introduced in Eq. (12) is constant (but de-
pends on the cosmological model). We do expect that this is
a valid approximation at the scales we are interested in (be-
low 5′) and in any case the results presented in the following
do not critically rely on this assumption, as is the case for the
skewness of the convergence.

A quantity like ⟨(γ(x1).γ(x2)) γ(x′)⟩ is expected to behave
as ⟨γ2(x)γ(x′)⟩when |x1− x2|≪ |x′ − (x1+ x2)/2|. In this limit
its expression is given by

〈
(γ(x1).γ(x2)) γ(x′)

〉
=

∫
d2 l d2 l′ Pκ(l) Pκ(l′)

×Qκ(l, l′) eil.(x2−x1)+il′.(x′−x1)

× cos(2θl+l′ − 2θl′ ) u(θl′ ) + {x1 ↔ x2} . (32)

Here the filtering effects can be ignored since all points are
taken at finite distance.

In the case of a simple bispectrum – with only a non-zero
monopole term and b = c = 0 – and with the help of the expan-
sion (18), the integrals over the angle θl and θl′ in (32) can be
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Fig. 3. Example of shear map obtained from a numerical simulation
(open CDM model, for an 5 × 5 square degree survey, van Waerbeke
et al. 1999).

are rather complicated. In particular the circular shape expected
around the pair points (according to the results of Sect. 2.2.2)
are observed only at very large distances (more that 5 times
the pair separation). At separation comparable to the pair dis-
tance the patterns increase in complexity, with a substantial part
of the area with no significant correlation. The most striking
feature is the quasi-uniform shear orientation along the seg-
ment joining the two points. This effect, which is expressed in
Eq. (35) where a uniform component is explicitly predicted,
clearly strengthens between the pair points. Such a feature
might appear somewhat surprising but a close inspection of
synthetic shear maps (Fig. 3) indeed reveals many highly con-
trasted clumpy regions surrounded by strong coherent shear
patterns primarily oriented transversely to directions between
clumps.

The central pattern is the strongest and the most typical fea-
ture of the three-point correlation map and should be the eas-
iest detectable one in the data. The previous analytical results
suggest that such a structure is expected to hold for power law
indices between −2 and −1 and should then be robust enough
to be used as a detection tool of non-Gaussian regions. More
detailed analysis performed along this idea are presented in the
following.

3. Comparison with numerical simulations

The numerical simulations we use are described in Jain
et al. (2000). The cosmological model is an open Universe
(Ωm = 0.3, ΩΛ = 0) with a Cold Dark Matter power spectrum

Fig. 4. The shear pattern of ⟨(γ(x1).γ(x2))γ(x′)⟩ measured in ray-
tracing simulations (Jain et al. 2000) for increasing pair separation
|x2 − x1|. The separations are, from top to bottom and left to right, 2,
4, 6, and 8 in plot units (1 unit corresponds to about 10′′). The pair
points are along the horizontal axis.

(Γ = 0.21) and a normalization σ8 = 0.85. The sources are
located at redshift unity and the simulation area covers about
11 square degrees with a resolution of 0.1 arcmin.

The shear patterns for pair points at increasing separation
are shown in Fig. 4. A visual inspection of their morphology
and strength confirms that the uniform shear pattern within
an ellipse that encompasses the pair points (as described in
the next section) is likely an optimum way to extract a non-
Gaussian signal. When the separation is small, the overall cir-
cular shear pattern is clearly visible. When the separation in-
creases, the shear appears uniform in the neighborhood of the
segment joining the pair points and is mostly radial at finite dis-
tance. We have already seen that these results might be some-
what dependent on the power spectrum index. For this simula-
tion the index varies from −1.3 to −1 and it is thus natural that
the patterns look like those obtained in the case of a power-law
model n = −1.

4. Improved measurement strategies

In this section we compare the measurements made in mock
catalogs that mimic a large number of observational effects
with different input models. We use these results to develop
different survey strategies adapted to real data sets.

3. Comment les mesurer, quelques résultats :
L30 F. Bernardeau et al.: Non-Gaussian signatures in lensing survey

where e(ij)
k is opposite to the component of the ellipticity

of galaxy k along the (xj −xi)-direction. The summations
are made for pairs or triplets such that dij = |xi − xj | is
in the chosen bin. xk lies within the ellipse defined by
|xk−xi| + |xk−xj | > 1.1|xi−xj | and wi are weights as-
sociated to each galaxy according to the scheme discussed
in BvWM02. We also consider in this Letter the decompo-
sition of the two-point correlation function into E and B
modes as described in Pen et al. (2002) which is used for
residual systematics checks. In the following we write ξ3

instead of ξ
t

3 in order to simplify the notation.

2.3. The VIRMOS-DESCART 2 and 3-point
correlation functions

Figure 1 shows the estimated 2-point (top) and reduced
3-point (bottom) correlation functions (ξ3 in units of ξ2

2).
Measurements have been made in regularly spaced bins
of width 400 pixels (e.g. 1.3 arcmin). For comparison, the
thick dotted lines shows the corresponding quantity mea-
sured in ray-tracing simulations for an open CDM model,
the thick dashed line for a τCDM and the dot-dashed line
for a ΛCDM model. The source redshift in these simula-
tions is one, very close to our mean source redshift of 0.9.
In this plot the error bars are the measurement errors
and do not include the cosmic variance (see BvWM02).
The dot-dot-dashed line represents the signal corrected
from the residual systematics (the B-mode contribution to
the two-point correlation function subtracted from the B
mode contribution as discussed in Pen et al. 2002), while
the solid line shows the total (E + B) measured signal.
The closeness of the two curves reveals the small amount
of residual systematics still present in the 2-point correla-
tion function.

A quality assessment of the 3-point function measure-
ments can be done by studying the effect of PSF cor-
rection on the star 3-points function. The star shapes
are measured from the standard procedure described in
Kaiser et al. (1995). It can be thought as a star shear
field that has to be subtracted off the measured galaxy
shapes. One can then measure the 2- and 3-point corre-
lation functions of the star field and compare them to
the PSF corrected data set. This is presented in Fig. 2.
The solid line in the top and bottom plots respectively
show the star two and three point functions, which are
compared to the same quantities measured on the cor-
rected galaxies (dashed lines and dashed-dot line for the
corrected E-mode 2-point function). The star two-point
correlation function is significantly larger than the galaxy
signal, but this is known not to be a problem for the two-
point function: Erben et al. (2001) and Bacon et al. (2001)
have shown that the PSF correction can account for star
anisotropies as large as 10% (the stars rms anisotropy is
6% in our data) to a precision better than than one per-
cent. This is also demonstrated in BvWM02 using cos-
mic shear simulated data (Moreover, the small ampli-
tude of the B-mode is also an independent proof of the

Fig. 1. Results for the VIRMOS-DESCART survey for the two
point correlation function (top) and the reduced three point
function (bottom). The solid line with error bars shows the raw
results, when both the E and B contributions to the two-point
correlation functions are included. The dot-dashed line with
error bars corresponds to measurements where the contribution
of the B mode has been subtracted out from the two-point
correlation function (but not from 3 there is no known way to
do it). These measurements are compared to results obtained
in τCDM, OCDM and ΛCDM simulations (dashed, dotted and
dot-dashed lines respectively). (τCDM, OCDM simulations are
described in Jain et al. 2000; ΛCDM simulation was provided
by M. White.)

robustness of the correction). BvWM02 have shown that
the correction scheme works also very well for the shear
three-point function. However, we see that the situation
for the three-point function (Fig. 2, bottom panel) is far
more interesting than the two-point function: the correc-
tion is smaller (that is in principle more robust), and the
angular dependence of the star three point function is to-
tally different from the galaxy three-point function. If our
three-point function signal were dominated by systemat-
ics it would likely not fit the expected signal as we can
see from Fig. 1, but would be more similar to Fig. 2,
bottom panel (solid line). Finally we have checked that
cuts in magnitudes do not significantly change the results.
Therefore, they are not produced by one single class of ob-
jects of the sample. We have thus several evidences that
our signal is genuinely cosmological.

Another issue, not taken into account in the error
bars, is the so-called cosmic variance, that is the amount
by which such a signal can vary in finite size surveys.

Première détection !

Pen et al. (03) : detection de la MAp skewness  
à partir CFHT data

Bernardeau et al. 02 :



Théorie des perturbations pour les grandes 
échelles

Résultat à l’ordre d’une boucle (RegPT, 
MPTbreeze),

Modèles des halos ou formes purement 
phénoménologiques pour les échelles 
intermédiaires et les petites échelles.
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These plots range from quasi-linear to highly nonlinear
regions and several qualitative observations about the na-
ture and evolution of the matter bispectrum are imme-
diately apparent.

At the higher redshifts z = 2, 3 shown in Fig. 12(a,b),
a flattened signal is dominant up to K ⌘

P

i

k
i

.
4, 3.5h/Mpc respectively (i.e. the tetrahedron region).
This is consistent with the flattened tree-level shape
(Eq. 15) which is shown in Fig. 4(a) at z = 2, but at much
lower amplitude on a more sensitive scale. This means
the flattened signal extrapolates with growing amplitude
well beyond the perturbative regime at these redshifts
(e.g. from Table I K . 0.6h/Mpc at z = 2). We focus
further on the perturbative regime with K . 1h/Mpc in
Sec. VIIA. For larger K, the bispectrum is dominated
by a nearly uniform signal associated with halo forma-
tion (i.e. the top pyramidal region with K & 4h/Mpc).
Also in Fig. 12(a,b), we note that a significant squeezed
signal is visible for 1h/Mpc . K . 4h/Mpc (on the
left and bottom tetrapyd edges), which can be compared
with Fig. 10.

At the lower redshifts z = 0, 1 in Fig. 12(c,d), the
strong halo signal grows to become completely dominant
for K & 1h/Mpc (saturating the colour scheme with
BSN

max ⇡ 350). At z = 0, this ‘constant’ halo signal is
so large the other contributions seem to be absent (com-
pare with Fig. 9). However, this apparent suppression
of flattened and squeezed signals at z = 0 is only rel-
ative, due to the signal-to-noise weighting (Eq. 4) with
the nonlinear power spectrum PNL(k). This deeply non-
linear nature of perturbations today is reflected in the
greater di�culty of matching phenomenological models
to simulations at low redshift.

VI. TOWARDS A THREE-SHAPE
BISPECTRUM BENCHMARK MODEL

In this section we analyse the measured bispectrum to
identify the shape degrees of freedom required for its ac-
curate construction. We study the growth rates of each
of these contributions, highlighting di↵erences with the
standard halo model particularly for the squeezed shape.
We use these results to guide the development of sim-
ple phenomenological bispectrum models: the two-halo
boost model and the three-shape benchmark model.

A. Simulation bispectrum shapes

We first analyse the shapes of the bispectra measured
from N -body simulations, in analogy with the investi-
gation of the perturbative and halo model shapes we
presented in Figs. 6, 7 above. We calculate the sliced
or binned shape correlators SS(K) between the N -body
matter bispectrum and the tree-level (Eq. 15), squeezed
(Eq. 13), and constant (Eq. 12) shapes to determine
whether, in combination, these three canonical shapes are
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FIG. 13. Sliced shape correlations of the measured N -
body bispectrum with the three canonical shapes: constant
(Eq. 12), squeezed (Eq. 13) and tree-level (Eq. 15) shown at
redshifts z = {0, 1, 2} (upper to lower panels). The sliced or
binned shape correlator on a given K = k

1

+ k
2

+ k
3

slice is
defined in Eq. (19).

su�cient to describe the actual bispectrum. The panels
of Fig. 13 show a consistent behaviour across the range of
redshifts considered. We know that, on large scales, per-
turbations approach linearity and therefore the tree-level
bispectrum is expected to be a good approximation to
the N -body data. The plots show that this is indeed the
case, as on these scales (K . 0.5h/Mpc at z = 0) there
is a high correlation between the simulated bispectrum
and the tree-level shape. The scales up to which the bis-
pectrum is completely dominated by the tree-level shape

Lazanu et al. 2015

Matrices de covariance ????

3. Descriptions : prédictions théoriques
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Au delà de fonctions à 3-points ?
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Collaboration avec
P. Reimberg (postdoc IPhT)
Ch. Pichon (IAP)
S. Codis  (IAP et CITA)
C. Uhlemann (univ. Utrecht)

•Fonctionnelles de Minkowski
•densité et corrélation de pics
•PDFs de densité/profiles

déformations des PDFs près 
du max données par 
corrélateurs de bas ordres



Conclusions / Résumé :
• Quelle que soit la sonde des grandes structures de l’univers 

utilisée (WL ou galaxies), le spectre de puissance ne suffit pas à 
extraire toute l’information cosmologique : on ne peut se permettre 
d’ignorer les correlations d’ordre plus élevé.

• En combinant les fonctions à 2-points et celles de plus grands 
ordres on peut (en principe)

• améliorer les contraintes cosmologiques
• mieux calibrer les erreurs systématiques

•  Une nouvelle fenêtre sur les NG primordiales et/ou modification 
de la gravité (modification des couplages)

•  Et tout reste à faire, groupe de travail “Higher Order Statistics” 
work package (Vincenzo F. Cardone)

•  co-financement CNES pour une thèse


